A functional association between the 5' and 3' splice site is established in the earliest prespliceosome complex (E) in mammals.

نویسندگان

  • S Michaud
  • R Reed
چکیده

The earliest detectable mammalian prespliceosome complex (E) contains the non-snRNP splicing factor U2AF, U1 snRNP, and several spliceosome-associated proteins (SAPs). We show that specific complexes, designated E3' and E5', assemble independently on RNAs containing only a 3' or 5' splice site, respectively. U2AF is enriched in E3', whereas U1 snRNP is enriched in E5'. Using a highly sensitive substrate-competition assay, we show that both the 5' splice site and the pyrimidine tract at the 3' splice site are required for efficient E complex assembly on intact pre-mRNA. We conclude that the 5' and 3' splice sites are associated functionally as early as E complex by either direct or indirect interactions between U1 snRNP and U2AF. Our observations predict that E complex assembly is a major control point for establishing splice site selection in both constitutively and alternatively spliced pre-mRNAs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SR proteins promote the first specific recognition of Pre-mRNA and are present together with the U1 small nuclear ribonucleoprotein particle in a general splicing enhancer complex.

We show that addition of SR proteins to in vitro splicing extracts results in a significant increase in assembly of the earliest prespliceosomal complex E and a corresponding decrease in assembly of the heterogeneous nuclear ribonucleoprotein (hnRNP) complex H. In addition, SR proteins promote formation of the E5' and E3' complexes that assemble on RNAs containing only 5' and 3' splice sites, r...

متن کامل

Purification and characterization of pre-mRNA splicing factor SF2 from HeLa cells.

SF2, an activity necessary for 5' splice site cleavage and lariat formation during pre-mRNA splicing in vitro, has been purified to near homogeneity from HeLa cells. The purest fraction contains only two related polypeptides of 33 kD. This fraction is sufficient to complement an S100 fraction, which contains the remaining splicing factors, to splice several pre-mRNAs. The optimal amount of SF2 ...

متن کامل

The U11/U12 snRNP 65K protein acts as a molecular bridge, binding the U12 snRNA and U11-59K protein.

U11 and U12 interact cooperatively with the 5' splice site and branch site of pre-mRNA as a stable preformed di-snRNP complex, thereby bridging the 5' and 3' ends of the intron within the U12-dependent prespliceosome. To identify proteins contributing to di-snRNP formation and intron bridging, we investigated protein-protein and protein-RNA interactions between components of the U11/U12 snRNP. ...

متن کامل

Characterization of a U2AF-independent commitment complex (E') in the mammalian spliceosome assembly pathway.

Early recognition of pre-mRNA during spliceosome assembly in mammals proceeds through the association of U1 small nuclear ribonucleoprotein particle (snRNP) with the 5' splice site as well as the interactions of the branch binding protein SF1 with the branch region and the U2 snRNP auxiliary factor U2AF with the polypyrimidine tract and 3' splice site. These factors, along with members of the S...

متن کامل

Alternative spliceosome assembly pathways revealed by single-molecule fluorescence microscopy.

Removal of introns from nascent transcripts (pre-mRNAs) by the spliceosome is an essential step in eukaryotic gene expression. Previous studies have suggested that the earliest steps in spliceosome assembly in yeast are highly ordered and the stable recruitment of U1 small nuclear ribonucleoprotein particle (snRNP) to the 5' splice site necessarily precedes recruitment of U2 snRNP to the branch...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genes & development

دوره 7 6  شماره 

صفحات  -

تاریخ انتشار 1993